
 ADA PROGRAMMING LANGUAGE AND SPECIFYING, MODELING AND DISTRIBUTED
COMPUTING FOR THE IMPLEMENTATION OF THE DISCRETE SINGULARITIES METHODS

 Mishchenko Victor

 110

SCALNET 2004

Ada programming language and specifying, modeling and distributed
computing for the implementation of the discrete singularities methods

Mishchenko Victor

V.N. Karazin Kharkov National University
V.O.Mischenko@univer.kharkov.ua

Abstract

An elementary technique of debugging and
optimizing Ada programs (using one personal computer
(PC)) designed for subsequent distributed computing in
a random local area network is given in this report. This
is the most available and inexpensive approach to the
problem of increasing the available dimensionality limit
in computational problems, when we do not need to
make the limit greater for more than one order. The
testing was conducted by the example of the linear
systems generation and solution subsystem that are
typical for the application of the discrete singularities
methods (DSM) to the modeling of physical processes.

1. Introduction

Computer clusters have become very popular for the
past decade [1]. However, many investigators and, quite
often, whole research teams do not have access to an
appropriate cluster project or unable to get connected to
any of them via the Internet. Under these circumstances
the problem of a short-term transformation of a local
access network having some other purpose into a cluster
system is an actual problem from the practical point of
view. However, administrators of such networks, for
example, academic ones, usually provide machine time
for calculations only when the network is not used for its
conventional purposes. It is possible to make use of such
opportunities only when there are debugged portable
programs to be installed on the network computers. One
has to manage the efficiency of parallel execution of
such programs at the expense of their inherent
parameters.

2. The Problem Statement

The objective of this work is to describe and test a
simple technique on the basis of the Ada compiler,
which can be offered as a tool for the development of
portable and adjustable programs divided into parts to be
installed on the local network computers and used for
computational purposes typical for a certain type of
computational methods. The aim of this work was to
complete all the stages by a transparent but real example
typical for a computational methods type known as
DSM. The subsystem for generating and solving linear

equations systems was selected for software of
numerical experiments in electrodynamics model
problems on the basis of discrete singularities methods
(DSM). Mathematical aspects of the problem were
discussed in [2].

3. Method and Materials

The Author has offered a three-stage technique for
the development of portable distributed computational
programs. Any computer can serve for development
purposes, and regular Ada compiler can be used as a
software tool. They make it possible to generate and
debug the entire program (stage 1). There is no need to
change the program when distributing it among different
computers (all we have to change is just formats of main
programs consisting of several lines). File data formats
and file access path structures will remain the same as
well. The optimal (i.e. even) duty of the impromptu
cluster is calculated on the basis of several test
executions of the distributed program in a specific
network (stage 2) using a parallel computing simulation
program (stage 3).

This technique was tested by a real example.
An application of DSM leads to one or many tasks of

the next character. It needs to process an array which
elements may be generated independently. The
processing of a part of the array depends on results of
processing of some other parts. We illustrate our
technique by the real example when array processing is a
solving of a linear system.

Stage 1. Firstly to elaborate tools library for the
decomposition of a linear equations system. Strips name
parts of system matrix:

with Types, Distributed_SLAE;
use Types, Distributed_SLAE;

package Matrix_Strips is
-- …
type Matrix_Strip is private;
function Init
(P: Line_Index; N: Colon_Index; S:
Machine_Index:= 0)
return Matrix_Strip;
procedure Change
 (MS: in out Matrix_Strip; S: Machine_Index);
procedure Strip_Check
 (MS: Matrix_Strip);

 ADA PROGRAMMING LANGUAGE AND SPECIFYING, MODELING AND DISTRIBUTED
COMPUTING FOR THE IMPLEMENTATION OF THE DISCRETE SINGULARITIES METHODS

 Mishchenko Victor

 111

SCALNET 2004

private
type M_Strip is tagged
record
 S: Machine_Index;
 A: Matrix;-- (Strip_Line_Index, 1..N);
end record;
-- …

end Matrix_Strips;

(It is Ada specification of the key unit. The whole library
contains nine library units and twelve compilation units
those are library unit bodies or subunits.)

Secondly to code tasks those realize the matrix
generation and linear system solving. We construct
solving method as one of numerous modifications of so-
called cell version of well-known LR-algorithm:

with Matrix_Strips;
 use Matrix_Strips;

package SLAE_Distribution is

 task type Slae_Generator is
 end Slae_Generator;

 M: constant Machine_Index:= Matrix_Strips.M;
 subtype M_Index is Index range 1..M;

 task type Lr_Processor (S: M_Index) is
 end Lr_Processor;

end Slae_Distribution;

(This package have the body and two subunits.)
Let design the primary main program:

with Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
 use Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
procedure Model_Of_Par5_Program is
 procedure Start (S: M_Index) is -- M=5 in the test
 Lr: Lr_Processor (S);
 begin Put(" #");Put(S,1);
 end;
begin

Put_Line("Model Of Parallel Compact LR-algorithm”
&”Rev: v.1. ");

 for I in M_Index
 loop
 Start(I);
 end loop;
end Model_Of_Par5_Program;

It remains to debug this program. Note that it is
possible mutual tasks blocking when the program is
executed on one processor. To eliminate those conflicts
we use a modeling of file data.

Stage 2. Firstly it needs to elaborate command files
for physical distribution of executed files and for
running them on computers of used net. Then let us

substitute for each copy of Model_Of_Par5_Program by
one of two variants of main program:

with Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
 use Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
procedure Parallel_Generator_Program is
 procedure Start (S: M_Index) is
 Lr: Slae_Generator;
 begin Put(" #");Put(S,1);
 end;
begin

Put_Line("Matrix for Parallel Compact LR-algorithm”
&”Rev: v.2. ");

 Start (S_Value); -- S_Value is 0 or –1, -2, ..
end Parallel_Generator_Program;

or

with Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
 use Slae_Distribution, Text_IO, Ada.Integer_Text_IO;
procedure LR_Gauss_Parallel_Program is
 procedure Start (S: M_Index) is
 Lr: Slae_Generator;
 begin Put(" #");Put(S,1);
 end;
begin
 Put_Line("Parallel Compact LR-algorithm Rev: v.2.
");
 Start (S_Value); -- S_Value is 1 or 2, .. M
end LR_Gauss_Parallel_Program;

Parallel execution of our distributed program

provides us with time data. It makes possible to
determine coefficients of the execution mathematical
model.

Stage 3. We may optimize parallel execution of our
distributed program for time by means of simulation. In
our case simulation implies substitution of bodies of
calculating program units for calls to a monitor for a
time counting. Variants of structure for simulation
programs written in Ada are well known [3]. Yet the
book [3] uses the language Ada-83. Now for the actual
language Ada-95 we have to replace the task mechanism
of simulation for the protected unit one. The target of
our optimization is to load computers uniformly. In
common case the number of
Parallel_Generator_Program-s is one of the mains
optimizing parameters.

Let take a real example. Let system dimension N
equals 2400. The time of the system solving by 7
computers has been roundly two times greater then the
time of the solving by 4 computers. But the time of the
system solving by 11 computers was the same (6
computers of the type of LR_Gauss_Parallel_Program
were in long waiting for the
Parallel_Generator_Program computer). How many
computers of Parallel_Generator_Program type may be

 ADA PROGRAMMING LANGUAGE AND SPECIFYING, MODELING AND DISTRIBUTED
COMPUTING FOR THE IMPLEMENTATION OF THE DISCRETE SINGULARITIES METHODS

 Mishchenko Victor

 112

SCALNET 2004

added to eliminate this waiting? The answer is hot
evident. We can obtain it by simulation.

We obtain the simulation program from our old good
Model_Of_Par5_Program by substitution for
Read/Write operations. New ones call protected
operations of the monitor which model current time for
all tasks of our program so, as they are executed on
different computers. So we don’t need for results of
computing apart from modeling time the actual
dimension has been changed. Therefor the time of
simulated program execution can be done available.

4. Conclusions

An ‘economical’ version of the cluster approach to
labor-intensive computations available to all
investigators which develop their own software,
including those who can have only short-term and
restricted access to computer networks, has been offered.

This work was aimed at and will be used for the
easing of resource restrictions with which many students
and employees of Karazin Kharkov National University
had to face when conducting computer-oriented
experiments on the basis of DSM. At the same time, the
work can be of help for those who need to increase the
available dimensionality limit for about one order in
computational problems at a low price.

It is evident that it is possible to use the reported
results for training purposes since the suggested

approach to the implementation of parallel computations
enables us to demonstrate their particular features in
computational clusters visually, using a common
computer classroom.

Wide potentialities of the Ada programming language
have been used. Its advantages lying outside the
generally recognized fields of its application (namely,
large-scale projects, built-in systems, real-time software,
etc.) have been demonstrated.

It is possible to extend this approach into other types
of parallel computations. A study of whether it is
possible to use this technique to promote the software
development for special-purpose cluster systems (for
example, MPI-operated ones) is of importance.

References

[1] Voyevodin V.V., Voyevodin Vl.V. Parallel computations,

BHV-Petersburg, Saint Petersburg, 2002.

[2] Mishchenko V.O. About modeling of electromagnetism

on the basis of discrete singularities methods for solving
hyper-singular equations. Transactions of the
International Conference on Computational Mathematics
(ICCM-2004). Part II. Novosibirsk: IVMiMG Publishing
House, Russian Academy of Sciences, 2004, p. 555-560.

[3] Vasilesku, Eugen N. Ada Programming with applications,

Allyn and Bacon Inc., Boston-London-Sydney-Toronto,
1987 (Russian translation: “Mir”, Moskow, 1990).

